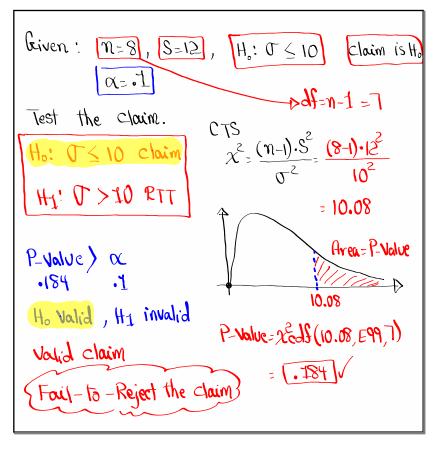


Testing one Population mean \mathcal{M} : (SG26) $H_0: \mathcal{M} = \mathcal{M}_0$ $H_0: \mathcal{M} \ge \mathcal{M}_0$ $H_0: \mathcal{M} \le \mathcal{M}_0$ $H_1: \mathcal{M} \neq \mathcal{M}_0$ $H_1: \mathcal{M} < \mathcal{M}_0$ $H_1: \mathcal{M} > \mathcal{M}_0$ TTT LTT RTT
Case I: (Known) Case II: (Unknown)
CV Z inUNorm CV t inut df=n-1
CTS Z - DZ-Test CTS t - DT-Test P-Value P inpt: Stats P-Value P inpt: Stats
Use Testing Chart For Validity of Ho or H1.
Final Conclusion has to be about the claim Reject the claim OR Fail-To-Reject the



The College doims the mean Score on all Final exams in a certain math class is M>80 at least 80. I took a Sample of 20 final exams from that class, their mean Score was 78 with Standard $n=20, \bar{\chi}=78, S=10$ deviation of 10. Test the claim Using α =.02. J UNKNOWN Ho: M 280 claim CV t INVT LTT df=n-1= 19 x=.02 H1: M<80 LTT Ha μŢ R NCR CTS t=-.894 .98 50. P_value P= . 191 V. MIM -2.205) J-Test J t=inuT(:02,19)= inpt: [Stats] M°: 80 CTS is in NOR Ho Valid $\overline{\chi}_{=}78$ P-value > ~ + Hy Invalid S=10 Valid claim N=50 JI M - M - M [FTR the claim]

I randomly Selected (5) Students, and here are 412=15 their ages: find 18 40 35 98 32 $1)\overline{X} \approx a8.3$ Round 30 32 19 24 20]¹⁹ 30 42 25 51 *31* a)S≈7.3 The College claims that the mean age of all Students is at most 25 Yrs. Ho: MS25 claim 25 ≥ للر Test the claim. H1: 11>25 RTT Ho NCR 95 NO 02 - > USE .05 H1 CR J UNKNOWN .05 CV t INVT RTT >2S=n-1=14 1.761 Q=.05 E= invT(.95,14) CTS t= 1.751 ~ CTS is in N(R Ho Valid) P-Nalue P=.051 P-Nalue 🔪 🔍 ᅕ Hy invalid T-Test Valid claim => FTR the claim inpl: STATS Mo= 25 IS we change & to .06, .07, .08, x = 28.3 .09, .1, then 8=7.3 P-value $\leq \propto$ n=15 Ho invalid = HI Valid MSMO RTT Invalid claim Reject the claim

Testing One Population Standard deviation
$$\sigma$$
:
Ho: $\sigma = \sigma_0$ | Ho: $\sigma \leq \sigma_0$ | Ho: $\sigma \geq \sigma_0$
H1: $\sigma \neq \sigma_0$ | H1: $\sigma > \sigma_0$ | H1: $\sigma < \sigma_0$
TTT | RTT | LTT
we use P-value method only.
CTS $\chi^2 = (n-1)\cdot s^2$ then we use
 $\sigma^2 = \chi^2 \sim \chi^2 \sim \xi$ to Sind
HE P-value.
We proceed with testing chart
Make Sinal Conclusion about the claim.

The College claims that Stand. Lev. of ages of
all students is at least 7.5 Years.

$$0 \ge 7.5$$

I took a Sample of 10 students, and Standard
Leviation of their ages was 6.3 Yrs.
 $n=10$ S=6.3
Ho: $0 \ge 7.5$ claim
Test the claim at $(x=.02)$ H1: $0 < 7.5$ LTT
CTS $\chi^2 (n-1) \cdot S^2 (10-1) \cdot 6.3^2 = 6.350$
 $0^2 = 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 6.350$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$
 $1 < 0 < 7.5^2 = 7.5^2$

The College claims that standard deviation of all scores in all math classes is 10. H1: 0 +10 TTT I took a Sample of 12 moth exams and Standard deviation of their Scores was 6. PN=12 S=6 $f_{n+1=11} = 11$ CTS $\chi^{2} = (n-1) \cdot S^{2}$ Test the claim. 02 NO $\alpha = p[\alpha = .05]$ (12-1).6² 3.96 Only Sor TTT; 10² Find area on each Side P-Value = 2* Smaller are HP . of 3.96 x2a8(0,3.96,11) x215(3.96,E99,11) - 1029 = .971 P-value = 2 (1029) = 1058 P-Value X (H. Valid) Valid FTR the .058 .05 H1 invalid claim Claim If we change a to .06, .07, .08, .09, .1, ... then P-Value < a Ho invalid Invalid Reject H1 Valid Claim ³ the <u>Claim</u>

Given: H1: C+ 5 n=6, S=9, Ho is the claim a=.1 Ddf=n-1=5 CTS $\chi^2 = (\underline{n} - 1) \cdot \underline{s}^2$ Test the claim. σ Ho: J=5 claim $\frac{1}{2}\left(\underline{6-1}\right)\cdot 9^{2}$ 16.2 52 H1: 075 (TTT Sind area on both Sides P-Value= 2.* Smaller are 16.2 2215(16.2, E99, 5) 2245(0,162,5)= .994 - 006 P-value = 2*(.006) = 1.012 Ho invalid -> invalid claim $P-Value \leq \infty$ H1 Valid Reject the claim) 510. .1 If we change a to .01, then Ho Valid => Valid claim P_Valve > X H1 invalid Fail-to-Reject •01 510. the claim